
Parallel linked lists

Lecture 10 of TDA384/DIT391
Principles of Concurrent Programming

Gerardo Schneider

Chalmers University of Technology | University of Gothenburg
SP1 2020/2021

Based on course slides by Carlo A. Furia and Sandro Stucki

Today’s menu

The burden of locking

Linked set implementations

Nodes, lists, and sets

Sequential access

Parallel linked sets

Coarse-grained locking

Fine-grained locking

Optimistic locking

Lazy node removal

Lock-free access

1 / 76

The burden of locking

Synchronization costs

A number of factors challenge designing correct and efficient
parallelizations:

• sequential dependencies

• synchronization costs

• spawning costs

• error proneness and composability

In this class, we focus on reducing the synchronization costs
associated with locking.

2 / 76

Synchronization costs

A number of factors challenge designing correct and efficient
parallelizations:

• sequential dependencies

• synchronization costs

• spawning costs

• error proneness and composability

In this class, we focus on reducing the synchronization costs
associated with locking.

2 / 76

The trouble with locks

Standard techniques for concurrent programming are ultimately
based on locks. Programming with locks has several drawbacks:

• performance overhead

• lock granularity is hard to choose:
• not enough locking: race conditions
• too much locking: not enough parallelism

• risk of deadlock and starvation

• lock-based implementations do not compose

• lock-based programs are hard to maintain and modify

Message-passing programming is higher-level, but it also inevitably
incurs synchronization costs – of magnitude comparable to those
associated with locks.

3 / 76

Breaking free of locks

Lock-free programming takes a fresh look at the problems of
concurrency and tries to dispense with using locks altogether.

• Lock-based program-
ming is pessimistic: be prepared for the worst possible conditions:

if things can go wrong, they will.

• Lock-free programming is optimistic: do what you have to do
without worrying about race conditions:

if things go wrong, just try again.

4 / 76

Lock-free programming

Lock-free programming relies on:

• using stronger primitives for atomic access,
• building optimistic algorithms using those primitives.

Compare-and-set operations are an example of stronger primitives:

public class AtomicInteger {

// atomically set to ‘update’ if current value is ‘expect’

// otherwise do not change value and return false

boolean compareAndSet(int expect, int update)

}

To update an AtomicInteger variable k:

do { // keep trying until no one changes k in between

int oldValue = k.get();

int newValue = compute(oldValue);

} while (!k.compareAndSet(oldValue, newValue));
5 / 76

Compare-and-set is not free

Diagram by Avadlam3, Wikipedia (2016).

CAS operations are not free: they involve memory barrier operations
to synchronize caches (∼100-1000 cycles).

6 / 76

https://commons.wikimedia.org/wiki/File:Shared_private.png
https://en.wikipedia.org/wiki/Cache_hierarchy
http://sigops.org/s/conferences/sosp/2013/papers/p33-david.pdf

Compare-and-set is not free

Chart by ayshen, based on Peter Norvig’s “Teach Yourself Programming in Ten Years”.

CAS operations are not free: they involve memory barrier operations
to synchronize caches (∼100-1000 cycles).

6 / 76

https://gist.github.com/ayshen
http://norvig.com/21-days.html#answers
http://sigops.org/s/conferences/sosp/2013/papers/p33-david.pdf

Lock-free vs. wait-free

Two classes of lock-free algorithms, collectively called non-blocking:

lock-free: guarantee system-wide progress: infinitely often, some
process makes progress,

wait-free: guarantee per-process progress: every process
eventually makes progress.

Which one is stronger?

Wait-free is stronger than lock-free:

• Lock-free algorithms are free from deadlock.

• Wait-free algorithms are free from deadlock and starvation.

7 / 76

Lock-free vs. wait-free

Two classes of lock-free algorithms, collectively called non-blocking:

lock-free: guarantee system-wide progress: infinitely often, some
process makes progress,

wait-free: guarantee per-process progress: every process
eventually makes progress.

Which one is stronger?

Wait-free is stronger than lock-free:

• Lock-free algorithms are free from deadlock.

• Wait-free algorithms are free from deadlock and starvation.

7 / 76

Thread-safe data structures

Programming correctly without using locks is challenging.

Instead of trying to develop general techniques, we focus on
implementing reusable data structures that make minimal usage of
locking. The effort involved in developing correct implementations
pays off since very many applications can then use such thread-safe
data structure implementations to synchronize safely and implicitly by
accessing the structures through their APIs.

A data structure is thread safe if its operations are free from race
conditions when executed by multi-threaded clients.

Our lock-free and wait-free algorithms are some of those used in the
implementations of thread safe structures in java.util.concurrent

(non-blocking data structures atomically accessible in parallel).

8 / 76

Linked set implementations

Parallel linked lists

In the rest of this class, we go through several implementations of
linked lists that support parallel access; the implementations differ in
how much locking they use to guarantee correctness and,
correspondingly, in how much parallelism they allow.

We will use pseudo-code that is very close to regular Java syntax but
occasionally takes some liberties to simplify the notation. On the
course website you can download fully working implementations of
some of the classes.

9 / 76

Linked set implementations

Nodes, lists, and sets

10 / 76

The interface of a set

We use linked lists to implement a set data structure with interface:

public interface Set<T>

{

// add ‘item’ to set; return false if ‘item’ is already in the set

boolean add(T item);

// remove ‘item’ from set; return false if ‘item’ not in the set

boolean remove(T item);

// is ‘item’ in set?

boolean has(T item);

}

11 / 76

Nodes

The underlying implementations of sets use singly-linked lists, which
are made of chains of nodes. Every node:

• stores an item – its value
• has a unique key – the value’s hash code
• points to the next node in the chain

In the graphical representations of nodes, we do not distinguish
between items and their keys – and represent both by characters:

interface Node<T>

{

// value of node

T item();

// hash code of value

int key();

// next node in chain

Node<T> next();

}

x

value/item/key

next

node

12 / 76

Lists as chains of nodes

A list with special head and tail nodes implements a set:

• the elements of the set are items in different nodes

• to facilitate searching, the nodes are maintained sorted in
ascending keys

• to facilitate searching, the head has the smallest possible key,
the tail has the largest possible key, and all elements have finitely
many keys that are in between

For example, the set {b, e, a, f, g} is implemented by:

head a b e f g tail

Relaxing these assumptions is possible at the cost of complicating
the implementations a bit.

13 / 76

Linked set implementations

Sequential access

14 / 76

Sequential set: basic linked implementation

We start with a standard linked-list-based implementation of sets,
which only works for sequential access.

class SequentialSet<T> implements Set<T>

{

// nodes at beginning and end

protected Node<T> head, tail;

// empty set

public SequentialSet() {

head = new SequentialNode<>(Integer.MIN_VALUE); // smallest key

tail = new SequentialNode<>(Integer.MAX_VALUE); // largest key

head.setNext(tail);

}

Empty set: head tail

15 / 76

Nodes in a sequential set

A node’s implementation uses private attributes with getters and
setters; this is a bit tedious now (we could just let the set
implementations access the attributes directly), but it will lead to nicer
designs in the several variants of set implementations we’ll describe.

class SequentialNode<T> implements Node<T> {

private T item; // value stored in node

private int key; // hash code of item

private Node<T> next; // next node in chain

// getters

T item() { return item; }

int key() { return key; }

Node<T> next() { return next; }

// setters

void setItem(T item) { this.item = item; }

void setKey(int key) { this.key = key; }

void setNext(Node<T> next) { this.next = next; }

}
16 / 76

Finding a position inside a list

Since we maintain nodes in order of key, and every item has a unique
key, we can search for the position of any given key by going through
the list from head to tail.

The method find implements this frequently used operation of finding
the position of a key inside a list. The position of key is a pair
(pred, curr) of adjacent nodes, such that
pred.key() < key <= curr.key().

For example, the position of c in the following list is:

head a b e f g tail

pred curr

Thanks to the boundary keys chosen for head and tail, searching for
any value key returns a valid position in the list.

17 / 76

Finding a position inside a list

Since we maintain nodes in order of key, and every item has a unique
key, we can search for the position of any given key by going through
the list from head to tail.

The method find implements this frequently used operation of finding
the position of a key inside a list. The position of key is a pair
(pred, curr) of adjacent nodes, such that
pred.key() < key <= curr.key().

For example, the position of c in the following list is:

head a b e f g tail

pred curr

Thanks to the boundary keys chosen for head and tail, searching for
any value key returns a valid position in the list.

17 / 76

Finding a position inside a list

head a b e f g tail

curr

pred currpred currpred curr

// first position from ‘start’ whose key is no smaller than ‘key’

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

curr = start; // from start node

do {

pred = curr; curr = curr.next(); // move to next node

} while (curr.key() < key); // until curr.key >= key

return (pred, curr); // return position

}

pseudo-code for: new Position<T>(pred, curr)

18 / 76

Finding a position inside a list

head a b e f g tail

curr

pred curr

pred currpred curr

// first position from ‘start’ whose key is no smaller than ‘key’

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

curr = start; // from start node

do {

pred = curr; curr = curr.next(); // move to next node

} while (curr.key() < key); // until curr.key >= key

return (pred, curr); // return position

}

pseudo-code for: new Position<T>(pred, curr)

18 / 76

Finding a position inside a list

head a b e f g tail

currpred curr

pred curr

pred curr

// first position from ‘start’ whose key is no smaller than ‘key’

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

curr = start; // from start node

do {

pred = curr; curr = curr.next(); // move to next node

} while (curr.key() < key); // until curr.key >= key

return (pred, curr); // return position

}

pseudo-code for: new Position<T>(pred, curr)

18 / 76

Finding a position inside a list

head a b e f g tail

currpred currpred curr

pred curr

// first position from ‘start’ whose key is no smaller than ‘key’

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

curr = start; // from start node

do {

pred = curr; curr = curr.next(); // move to next node

} while (curr.key() < key); // until curr.key >= key

return (pred, curr); // return position

}

pseudo-code for: new Position<T>(pred, curr)

18 / 76

Sequential set: method has

A set has item if and only if item is (equal to) the first element in the
set whose key is greater than or equal to item’s.

head a b e f g tail

head a b e f g tail

pred curr

// is ‘item’ in set?

public boolean has(T item) {

int key = item.key(); // item’s key

// find position of key from head

Node<T> pred, curr = find(head, key);

// curr.key() >= key

return curr.key() == key; // item can only appear here!

}

19 / 76

Sequential set: method has

A set has item if and only if item is (equal to) the first element in the
set whose key is greater than or equal to item’s.

head a b e f g tail

pred curr

// is ‘item’ in set?

public boolean has(T item) {

int key = item.key(); // item’s key

// find position of key from head

Node<T> pred, curr = find(head, key);

// curr.key() >= key

return curr.key() == key; // item can only appear here!

}

19 / 76

Sequential set: method add

A new item must be added between pred and curr, where
(pred, curr) is item’s position in the list.

head a b e f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new Node<>(item); // new node

Node<T> pred, curr = find(head, item.key()); // curr.key >= item.key()

if (curr.key() == item.key()) return false; // item already in set

else // item not already in set: add node between pred and curr

{ node.setNext(curr); pred.setNext(node); return true; }

}
20 / 76

Sequential set: method add

A new item must be added between pred and curr, where
(pred, curr) is item’s position in the list.

head a b e f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new Node<>(item); // new node

Node<T> pred, curr = find(head, item.key()); // curr.key >= item.key()

if (curr.key() == item.key()) return false; // item already in set

else // item not already in set: add node between pred and curr

{ node.setNext(curr); pred.setNext(node); return true; }

}
20 / 76

Sequential set: method add

A new item must be added between pred and curr, where
(pred, curr) is item’s position in the list.

head a b e f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new Node<>(item); // new node

Node<T> pred, curr = find(head, item.key()); // curr.key >= item.key()

if (curr.key() == item.key()) return false; // item already in set

else // item not already in set: add node between pred and curr

{ node.setNext(curr); pred.setNext(node); return true; }

}
20 / 76

Sequential set: method add

A new item must be added between pred and curr, where
(pred, curr) is item’s position in the list.

head a b e f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new Node<>(item); // new node

Node<T> pred, curr = find(head, item.key()); // curr.key >= item.key()

if (curr.key() == item.key()) return false; // item already in set

else // item not already in set: add node between pred and curr

{ node.setNext(curr); pred.setNext(node); return true; }

}
20 / 76

Sequential set: method add

A new item must be added between pred and curr, where
(pred, curr) is item’s position in the list.

head a b e f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new Node<>(item); // new node

Node<T> pred, curr = find(head, item.key()); // curr.key >= item.key()

if (curr.key() == item.key()) return false; // item already in set

else // item not already in set: add node between pred and curr

{ node.setNext(curr); pred.setNext(node); return true; }

}
20 / 76

Sequential set: method remove

An element item is removed from a set by redirecting pred.next to
skip over curr, where (pred, curr) is item’s position in the list.

head a b e f g tail

pred curr

public boolean remove(T item) {

Node<T> pred, curr = find(head, item.key());

// curr.key() >= item.key()

if (curr.key() > item.key()) return false; // item not in set

else // item in set: remove node curr

{ pred.setNext(curr.next()); return true; }

}

21 / 76

Sequential set: method remove

An element item is removed from a set by redirecting pred.next to
skip over curr, where (pred, curr) is item’s position in the list.

head a b e f g tail

pred curr

public boolean remove(T item) {

Node<T> pred, curr = find(head, item.key());

// curr.key() >= item.key()

if (curr.key() > item.key()) return false; // item not in set

else // item in set: remove node curr

{ pred.setNext(curr.next()); return true; }

}

21 / 76

Sequential set: method remove

An element item is removed from a set by redirecting pred.next to
skip over curr, where (pred, curr) is item’s position in the list.

head a b e f g tail

pred curr

public boolean remove(T item) {

Node<T> pred, curr = find(head, item.key());

// curr.key() >= item.key()

if (curr.key() > item.key()) return false; // item not in set

else // item in set: remove node curr

{ pred.setNext(curr.next()); return true; }

}

21 / 76

Sequential set: method remove

An element item is removed from a set by redirecting pred.next to
skip over curr, where (pred, curr) is item’s position in the list.

head a b e f g tail

pred curr

public boolean remove(T item) {

Node<T> pred, curr = find(head, item.key());

// curr.key() >= item.key()

if (curr.key() > item.key()) return false; // item not in set

else // item in set: remove node curr

{ pred.setNext(curr.next()); return true; }

}

21 / 76

Sequential set: method remove

An element item is removed from a set by redirecting pred.next to
skip over curr, where (pred, curr) is item’s position in the list.

head a b f g tail

pred curr

public boolean remove(T item) {

Node<T> pred, curr = find(head, item.key());

// curr.key() >= item.key()

if (curr.key() > item.key()) return false; // item not in set

else // item in set: remove node curr

{ pred.setNext(curr.next()); return true; }

}

21 / 76

Sequential set does not work under concurrency

If multiple threads are active on the same instance of SequentialSet,
they can easily interfere with each other’s operations – and possibly
leave the set in an inconsistent state.

For example, if thread t runs remove(e) while thread u runs add(c):

head a b e f g tail

pred curr

pred curr

c

If find goes through the list while another thread is modifying it, even
more subtle errors may occur.

22 / 76

Sequential set does not work under concurrency

If multiple threads are active on the same instance of SequentialSet,
they can easily interfere with each other’s operations – and possibly
leave the set in an inconsistent state.

For example, if thread t runs remove(e) while thread u runs add(c):
in some interleavings, remove is reverted:

head a b e f g tail

pred curr

pred curr

c

If find goes through the list while another thread is modifying it, even
more subtle errors may occur.

22 / 76

Sequential set does not work under concurrency

If multiple threads are active on the same instance of SequentialSet,
they can easily interfere with each other’s operations – and possibly
leave the set in an inconsistent state.

For example, if thread t runs remove(e) while thread u runs add(c):
in some interleavings, remove is reverted:

head a b e f g tail

pred curr

pred curr

c

If find goes through the list while another thread is modifying it, even
more subtle errors may occur.

22 / 76

Sequential set does not work under concurrency

If multiple threads are active on the same instance of SequentialSet,
they can easily interfere with each other’s operations – and possibly
leave the set in an inconsistent state.

For example, if thread t runs remove(e) while thread u runs add(c):
in some interleavings, remove is reverted:

head a b e f g tail

pred curr

pred curr

c

If find goes through the list while another thread is modifying it, even
more subtle errors may occur.

22 / 76

Sequential set does not work under concurrency

If multiple threads are active on the same instance of SequentialSet,
they can easily interfere with each other’s operations – and possibly
leave the set in an inconsistent state.

For example, if thread t runs remove(e) while thread u runs add(c):
in some interleavings, add is reverted:

head a b e f g tail

pred curr

pred curr

c

If find goes through the list while another thread is modifying it, even
more subtle errors may occur.

22 / 76

Sequential set does not work under concurrency

If multiple threads are active on the same instance of SequentialSet,
they can easily interfere with each other’s operations – and possibly
leave the set in an inconsistent state.

For example, if thread t runs remove(e) while thread u runs add(c):
in some interleavings, add is reverted:

head a b e f g tail

pred curr

pred curr

c

If find goes through the list while another thread is modifying it, even
more subtle errors may occur.

22 / 76

Sequential set does not work under concurrency

If multiple threads are active on the same instance of SequentialSet,
they can easily interfere with each other’s operations – and possibly
leave the set in an inconsistent state.

For example, if thread t runs remove(e) while thread u runs add(c):
in some interleavings, add is reverted:

head a b e f g tail

pred curr

pred curr

c

If find goes through the list while another thread is modifying it, even
more subtle errors may occur.

22 / 76

Sequential set does not work under concurrency

If multiple threads are active on the same instance of SequentialSet,
they can easily interfere with each other’s operations – and possibly
leave the set in an inconsistent state.

For example, if thread t runs remove(e) while thread u runs add(c):
in some interleavings, add is reverted:

head a b e f g tail

pred curr

pred curr

c

If find goes through the list while another thread is modifying it, even
more subtle errors may occur.

22 / 76

Parallel linked sets

Parallel linked sets

Coarse-grained locking

23 / 76

Concurrent set with coarse-grained locking

A straightforward way to make SequentialSet work correctly under
concurrency is using a lock to ensure that at most one thread at a
time is operating on the structure.

class CoarseSet<T> extends SequentialSet<T>

{

// lock controlling access to the whole set

private Lock lock = new ReentrantLock();

// overriding of add, remove, and has

Every method add, remove, and has simply works as follows:

1. acquires the lock on the set

2. performs the operation as in SequentialSet

3. releases the lock on the set

24 / 76

Coarse-locking set: method add

head a b e f g tail

pred curr

node: c

public boolean add(T item) {

lock.lock(); // lock whole set

try {

return super.add(item); // execute ‘add’ while locking

} finally {

lock.unlock(); // done: release lock

}

}
25 / 76

Coarse-locking set: method add

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred curr

node: c

public boolean add(T item) {

lock.lock(); // lock whole set

try {

return super.add(item); // execute ‘add’ while locking

} finally {

lock.unlock(); // done: release lock

}

}
25 / 76

Coarse-locking set: method add

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred curr

node: c

public boolean add(T item) {

lock.lock(); // lock whole set

try {

return super.add(item); // execute ‘add’ while locking

} finally {

lock.unlock(); // done: release lock

}

}
25 / 76

Coarse-locking set: method add

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred curr

node: c

public boolean add(T item) {

lock.lock(); // lock whole set

try {

return super.add(item); // execute ‘add’ while locking

} finally {

lock.unlock(); // done: release lock

}

}
25 / 76

Coarse-locking set: method add

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred curr

node: c

public boolean add(T item) {

lock.lock(); // lock whole set

try {

return super.add(item); // execute ‘add’ while locking

} finally {

lock.unlock(); // done: release lock

}

}
25 / 76

Coarse-locking set: method add

head a b e f g tail

pred curr

node: c

public boolean add(T item) {

lock.lock(); // lock whole set

try {

return super.add(item); // execute ‘add’ while locking

} finally {

lock.unlock(); // done: release lock

}

}
25 / 76

Coarse-locking set: method add

head a b e f g tail

pred curr

node: c

public boolean add(T item) {

lock.lock(); // lock whole set

try {

return super.add(item); // execute ‘add’ while locking

} finally {

lock.unlock(); // done: release lock

}

}
25 / 76

Coarse-locking set: method remove

head a b e f g tail

pred curr

public boolean remove(T item) {

lock.lock(); // lock whole set

try {

return super.remove(item); // execute ‘remove’ while locking

} finally {

lock.unlock(); // done: release lock

}

}

26 / 76

Coarse-locking set: method remove

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred curr

public boolean remove(T item) {

lock.lock(); // lock whole set

try {

return super.remove(item); // execute ‘remove’ while locking

} finally {

lock.unlock(); // done: release lock

}

}

26 / 76

Coarse-locking set: method remove

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred curr

public boolean remove(T item) {

lock.lock(); // lock whole set

try {

return super.remove(item); // execute ‘remove’ while locking

} finally {

lock.unlock(); // done: release lock

}

}

26 / 76

Coarse-locking set: method remove

head
µ

a

µ

b

µ

e f

µ

g

µ

tail
µ

pred curr

public boolean remove(T item) {

lock.lock(); // lock whole set

try {

return super.remove(item); // execute ‘remove’ while locking

} finally {

lock.unlock(); // done: release lock

}

}

26 / 76

Coarse-locking set: method remove

head
µ

a

µ

b

µ

f

µ

g

µ

tail
µ

pred curr

public boolean remove(T item) {

lock.lock(); // lock whole set

try {

return super.remove(item); // execute ‘remove’ while locking

} finally {

lock.unlock(); // done: release lock

}

}

26 / 76

Coarse-locking set: method remove

head a b f g tail

pred curr

public boolean remove(T item) {

lock.lock(); // lock whole set

try {

return super.remove(item); // execute ‘remove’ while locking

} finally {

lock.unlock(); // done: release lock

}

}

26 / 76

Coarse-locking set: method has

head a b e f g tail

pred currpred curr

public boolean has(T item) {

lock.lock(); //lock whole set

try {

return super.has(item); // execute ‘has’ while locking

} finally {

lock.unlock(); // done: release lock

}

}

27 / 76

Coarse-locking set: method has

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred currpred curr

public boolean has(T item) {

lock.lock(); //lock whole set

try {

return super.has(item); // execute ‘has’ while locking

} finally {

lock.unlock(); // done: release lock

}

}

27 / 76

Coarse-locking set: method has

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred curr

pred curr

public boolean has(T item) {

lock.lock(); //lock whole set

try {

return super.has(item); // execute ‘has’ while locking

} finally {

lock.unlock(); // done: release lock

}

}

27 / 76

Coarse-locking set: method has

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred curr

pred curr

public boolean has(T item) {

lock.lock(); //lock whole set

try {

return super.has(item); // execute ‘has’ while locking

} finally {

lock.unlock(); // done: release lock

}

}

27 / 76

Coarse-locking set: method has

head a b e f g tail

pred curr

pred curr

public boolean has(T item) {

lock.lock(); //lock whole set

try {

return super.has(item); // execute ‘has’ while locking

} finally {

lock.unlock(); // done: release lock

}

}

27 / 76

Coarse-locking set: pros and cons

Pros:

• obviously correct – it avoids race conditions and deadlocks

• if the lock is fair, so is access to the set

• if contention is low (not many threads accessing the set
concurrently), CoarseSet is quite efficient

Cons:

• access to the set is essentially sequential – missing opportunities
for parallelization

• if contention is high (many threads accessing the set
concurrently), CoarseSet is quite slow

28 / 76

Locking after finding?

Can we reduce the size of the critical sections by executing find

without locking, and then acquiring the lock only before modifying the
list? No, because the list may be modified between when a thread
performs find and when it acquires the lock.

For example, suppose thread t runs remove(e) while thread u runs
add(c), and t acquires the lock first:

head a b e f g tail

pred curr

pred curr

c

29 / 76

Locking after finding?

Can we reduce the size of the critical sections by executing find

without locking, and then acquiring the lock only before modifying the
list? No, because the list may be modified between when a thread
performs find and when it acquires the lock.

For example, suppose thread t runs remove(e) while thread u runs
add(c), and t acquires the lock first:

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred curr

pred curr

c

29 / 76

Locking after finding?

Can we reduce the size of the critical sections by executing find

without locking, and then acquiring the lock only before modifying the
list? No, because the list may be modified between when a thread
performs find and when it acquires the lock.

For example, suppose thread t runs remove(e) while thread u runs
add(c), and t acquires the lock first:

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred curr

pred curr

c

29 / 76

Locking after finding?

Can we reduce the size of the critical sections by executing find

without locking, and then acquiring the lock only before modifying the
list? No, because the list may be modified between when a thread
performs find and when it acquires the lock.

For example, suppose thread t runs remove(e) while thread u runs
add(c), and t acquires the lock first:

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred curr

pred curr

c

29 / 76

Locking after finding?

Can we reduce the size of the critical sections by executing find

without locking, and then acquiring the lock only before modifying the
list? No, because the list may be modified between when a thread
performs find and when it acquires the lock.

For example, suppose thread t runs remove(e) while thread u runs
add(c), and t acquires the lock first:

head a b e f g tail

pred curr

pred curr

c

29 / 76

Locking after finding?

Can we reduce the size of the critical sections by executing find

without locking, and then acquiring the lock only before modifying the
list? No, because the list may be modified between when a thread
performs find and when it acquires the lock.

For example, suppose thread t runs remove(e) while thread u runs
add(c), and t acquires the lock first:

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred curr

pred curr

c

29 / 76

Locking after finding?

Can we reduce the size of the critical sections by executing find

without locking, and then acquiring the lock only before modifying the
list? No, because the list may be modified between when a thread
performs find and when it acquires the lock.

For example, suppose thread t runs remove(e) while thread u runs
add(c), and t acquires the lock first:

head
µ

a

µ

b

µ

e

µ

f

µ

g

µ

tail
µ

pred curr

pred curr

c

29 / 76

Locking after finding?

Can we reduce the size of the critical sections by executing find

without locking, and then acquiring the lock only before modifying the
list? No, because the list may be modified between when a thread
performs find and when it acquires the lock.

For example, suppose thread t runs remove(e) while thread u runs
add(c), and t acquires the lock first:

head a b e f g tail

pred curr

pred curr

c

29 / 76

Parallel linked sets

Fine-grained locking

30 / 76

Concurrent set with fine-grained locking

Rather than locking the whole linked list at once, we add a lock to
each node. Then, threads only lock the individual nodes on which
they are operating.

public class FineSet<T> extends SequentialSet<T>

{

// empty set

public FineSet() {

head = new LockableNode<>(Integer.MIN_VALUE); // smallest key

tail = new LockableNode<>(Integer.MAX_VALUE); // largest key

head.setNext(tail);

}

// overriding of find, add, remove, and has

31 / 76

Nodes in a fine-locking set

Each node includes a lock object, and lock and unlock methods that
access the lock.

class LockableNode<T> extends SequentialNode<T>

{

private Lock lock = new ReentrantLock();

void lock() { lock.lock(); } // lock node

void unlock() { lock.unlock(); } // unlock node

}

32 / 76

How many nodes do we have to lock?

We have seen (in CoarseSet) that we have to lock as soon as we start
executing find. Thus, we start locking the head node and pass the
lock along the chain of nodes.

How many nodes do we have to hold locked at once? Even though
pred’s node is the only node that is actually modified, only locking
pred is not enough.

For example, if thread t runs remove(e) while thread u runs
remove(b), it may happen that only b’s removal takes place:

head a b e f g tail

pred curr

pred curr

Thus, we lock both pred and curr at once.

33 / 76

How many nodes do we have to lock?

We have seen (in CoarseSet) that we have to lock as soon as we start
executing find. Thus, we start locking the head node and pass the
lock along the chain of nodes.

How many nodes do we have to hold locked at once? Even though
pred’s node is the only node that is actually modified, only locking
pred is not enough.

For example, if thread t runs remove(e) while thread u runs
remove(b), it may happen that only b’s removal takes place:

head a

µ

b

µ

e f g tail

pred curr

pred curr

Thus, we lock both pred and curr at once.

33 / 76

How many nodes do we have to lock?

We have seen (in CoarseSet) that we have to lock as soon as we start
executing find. Thus, we start locking the head node and pass the
lock along the chain of nodes.

How many nodes do we have to hold locked at once? Even though
pred’s node is the only node that is actually modified, only locking
pred is not enough.

For example, if thread t runs remove(e) while thread u runs
remove(b), it may happen that only b’s removal takes place:

head a

µ

b

µ

e f g tail

pred curr

pred curr

Thus, we lock both pred and curr at once.
33 / 76

Fine-locking set: method find

head a b e f g tail

pred currpred currpred currpred curr

// find while locking pred and curr, return locked position

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

pred = start; curr = start.next(); // from start node

pred.lock(); curr.lock(); // lock pred and curr nodes

while (curr.key < key) {

pred.unlock(); // unlock pred node

pred = curr; curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}
pseudo-code for: new Position<T>(pred, curr)

34 / 76

Fine-locking set: method find

head a b e f g tail

pred curr

pred currpred currpred curr

// find while locking pred and curr, return locked position

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

pred = start; curr = start.next(); // from start node

pred.lock(); curr.lock(); // lock pred and curr nodes

while (curr.key < key) {

pred.unlock(); // unlock pred node

pred = curr; curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}
pseudo-code for: new Position<T>(pred, curr)

34 / 76

Fine-locking set: method find

pred curr

head
µ

a

µ

b e f g tail

pred currpred currpred curr

// find while locking pred and curr, return locked position

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

pred = start; curr = start.next(); // from start node

pred.lock(); curr.lock(); // lock pred and curr nodes

while (curr.key < key) {

pred.unlock(); // unlock pred node

pred = curr; curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}
pseudo-code for: new Position<T>(pred, curr)

34 / 76

Fine-locking set: method find

pred curr

head a

µ

b e f g tail

pred currpred currpred curr

// find while locking pred and curr, return locked position

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

pred = start; curr = start.next(); // from start node

pred.lock(); curr.lock(); // lock pred and curr nodes

while (curr.key < key) {

pred.unlock(); // unlock pred node

pred = curr; curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}
pseudo-code for: new Position<T>(pred, curr)

34 / 76

Fine-locking set: method find

pred curr

head a

µ

b e f g tail

pred curr

pred currpred curr

// find while locking pred and curr, return locked position

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

pred = start; curr = start.next(); // from start node

pred.lock(); curr.lock(); // lock pred and curr nodes

while (curr.key < key) {

pred.unlock(); // unlock pred node

pred = curr; curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}
pseudo-code for: new Position<T>(pred, curr)

34 / 76

Fine-locking set: method find

pred curr

pred curr

head a

µ

b

µ

e f g tail

pred currpred curr

// find while locking pred and curr, return locked position

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

pred = start; curr = start.next(); // from start node

pred.lock(); curr.lock(); // lock pred and curr nodes

while (curr.key < key) {

pred.unlock(); // unlock pred node

pred = curr; curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}
pseudo-code for: new Position<T>(pred, curr)

34 / 76

Fine-locking set: method find

pred curr

pred curr

head a b

µ

e f g tail

pred currpred curr

// find while locking pred and curr, return locked position

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

pred = start; curr = start.next(); // from start node

pred.lock(); curr.lock(); // lock pred and curr nodes

while (curr.key < key) {

pred.unlock(); // unlock pred node

pred = curr; curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}
pseudo-code for: new Position<T>(pred, curr)

34 / 76

Fine-locking set: method find

pred currpred curr

head a b

µ

e f g tail

pred curr

pred curr

// find while locking pred and curr, return locked position

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

pred = start; curr = start.next(); // from start node

pred.lock(); curr.lock(); // lock pred and curr nodes

while (curr.key < key) {

pred.unlock(); // unlock pred node

pred = curr; curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}
pseudo-code for: new Position<T>(pred, curr)

34 / 76

Fine-locking set: method find

pred currpred curr

pred curr

head a b

µ

e

µ

f g tail

pred curr

// find while locking pred and curr, return locked position

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

pred = start; curr = start.next(); // from start node

pred.lock(); curr.lock(); // lock pred and curr nodes

while (curr.key < key) {

pred.unlock(); // unlock pred node

pred = curr; curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}
pseudo-code for: new Position<T>(pred, curr)

34 / 76

Fine-locking set: method find

pred currpred currpred curr

head a b

µ

e

µ

f g tail

pred curr

// find while locking pred and curr, return locked position

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

pred = start; curr = start.next(); // from start node

pred.lock(); curr.lock(); // lock pred and curr nodes

while (curr.key < key) {

pred.unlock(); // unlock pred node

pred = curr; curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}
pseudo-code for: new Position<T>(pred, curr)

34 / 76

Hand-over-hand locking

The lock acquisition protocol used by find in FineSet is called
hand-over-hand locking or lock coupling.

• Always keeping at least one node locked prevents interference
between threads; otherwise this may happen:

head a b e f g tail

pred curr

pred currpred currpred curr

pred curr

• Locking two nodes at once is sufficient to prevent problems with
conflicting operations: threads proceed along the linked list in
order, without one thread “overtaking” another thread that is
further out

• The protocol ensures that locks are acquired by all threads in the
same order, thus avoiding deadlocks

35 / 76

Hand-over-hand locking

The lock acquisition protocol used by find in FineSet is called
hand-over-hand locking or lock coupling.

• Always keeping at least one node locked prevents interference
between threads; otherwise this may happen:

head
µ

a

µ

b

µ

e

µ

f g tail

pred curr

pred curr

pred currpred curr

pred curr

• Locking two nodes at once is sufficient to prevent problems with
conflicting operations: threads proceed along the linked list in
order, without one thread “overtaking” another thread that is
further out

• The protocol ensures that locks are acquired by all threads in the
same order, thus avoiding deadlocks

35 / 76

Hand-over-hand locking

The lock acquisition protocol used by find in FineSet is called
hand-over-hand locking or lock coupling.

• Always keeping at least one node locked prevents interference
between threads; otherwise this may happen:

head
µ

a

µ

b e f g tail

pred curr

pred curr

pred currpred curr

pred curr

• Locking two nodes at once is sufficient to prevent problems with
conflicting operations: threads proceed along the linked list in
order, without one thread “overtaking” another thread that is
further out

• The protocol ensures that locks are acquired by all threads in the
same order, thus avoiding deadlocks

35 / 76

Hand-over-hand locking

The lock acquisition protocol used by find in FineSet is called
hand-over-hand locking or lock coupling.

• Always keeping at least one node locked prevents interference
between threads; otherwise this may happen:

head a

µ

b

µ

e f g tail

pred curr

pred curr

pred curr

pred curr

pred curr

• Locking two nodes at once is sufficient to prevent problems with
conflicting operations: threads proceed along the linked list in
order, without one thread “overtaking” another thread that is
further out

• The protocol ensures that locks are acquired by all threads in the
same order, thus avoiding deadlocks

35 / 76

Hand-over-hand locking

The lock acquisition protocol used by find in FineSet is called
hand-over-hand locking or lock coupling.

• Always keeping at least one node locked prevents interference
between threads; otherwise this may happen:

head a b

µ

e

µ

f g tail

pred curr

pred currpred curr

pred curr

pred curr

• Locking two nodes at once is sufficient to prevent problems with
conflicting operations: threads proceed along the linked list in
order, without one thread “overtaking” another thread that is
further out

• The protocol ensures that locks are acquired by all threads in the
same order, thus avoiding deadlocks

35 / 76

Hand-over-hand locking

The lock acquisition protocol used by find in FineSet is called
hand-over-hand locking or lock coupling.

• Always keeping at least one node locked prevents interference
between threads; otherwise this may happen:

head a b

µ

e

µ

f g tail

pred curr

pred currpred curr

pred curr

pred curr

• Locking two nodes at once is sufficient to prevent problems with
conflicting operations: threads proceed along the linked list in
order, without one thread “overtaking” another thread that is
further out

• The protocol ensures that locks are acquired by all threads in the
same order, thus avoiding deadlocks

35 / 76

Hand-over-hand locking

The lock acquisition protocol used by find in FineSet is called
hand-over-hand locking or lock coupling.

• Always keeping at least one node locked prevents interference
between threads; otherwise this may happen:

head a b e

µ

f

µ

g tail

pred curr

pred currpred currpred curr

pred curr

• Locking two nodes at once is sufficient to prevent problems with
conflicting operations: threads proceed along the linked list in
order, without one thread “overtaking” another thread that is
further out

• The protocol ensures that locks are acquired by all threads in the
same order, thus avoiding deadlocks

35 / 76

Hand-over-hand locking

The lock acquisition protocol used by find in FineSet is called
hand-over-hand locking or lock coupling.

• Always keeping at least one node locked prevents interference
between threads; otherwise this may happen:

head a b e

µ

f

µ

g tail

pred curr

pred currpred currpred curr

pred curr
This node has been removed!

• Locking two nodes at once is sufficient to prevent problems with
conflicting operations: threads proceed along the linked list in
order, without one thread “overtaking” another thread that is
further out

• The protocol ensures that locks are acquired by all threads in the
same order, thus avoiding deadlocks

35 / 76

Hand-over-hand locking

The lock acquisition protocol used by find in FineSet is called
hand-over-hand locking or lock coupling.

• Always keeping at least one node locked prevents interference
between threads; otherwise this may happen:

head a b e

µ

f

µ

g tail

pred curr

pred currpred currpred curr

pred curr
This node has been removed!

• Locking two nodes at once is sufficient to prevent problems with
conflicting operations: threads proceed along the linked list in
order, without one thread “overtaking” another thread that is
further out

• The protocol ensures that locks are acquired by all threads in the
same order, thus avoiding deadlocks

35 / 76

Fine-locking set: method add

head a b e f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new LockableNode<>(item); // new node

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // add node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}
36 / 76

Fine-locking set: method add

head a b

µ

e

µ

f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new LockableNode<>(item); // new node

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // add node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}
36 / 76

Fine-locking set: method add

head a b

µ

e

µ

f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new LockableNode<>(item); // new node

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // add node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}
36 / 76

Fine-locking set: method add

head a b e f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new LockableNode<>(item); // new node

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // add node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}
36 / 76

Fine-locking set: method add

head a b e f g tail

pred curr

node: cc

public boolean add(T item) {

Node<T> node = new LockableNode<>(item); // new node

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // add node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}
36 / 76

Fine-locking set: method remove

head a b e f g tail

pred curr

public boolean remove(T item) {

try { // find with hand-over-hand locking

// the first position such that curr.key >= item.key

Node<T> pred, curr = find(head, item.key()); // locking

... // remove node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

37 / 76

Fine-locking set: method remove

head a b

µ

e

µ

f g tail

pred curr

public boolean remove(T item) {

try { // find with hand-over-hand locking

// the first position such that curr.key >= item.key

Node<T> pred, curr = find(head, item.key()); // locking

... // remove node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

37 / 76

Fine-locking set: method remove

head a b

µ

e

µ

f g tailhead a b

µ

e f g tail

pred curr

public boolean remove(T item) {

try { // find with hand-over-hand locking

// the first position such that curr.key >= item.key

Node<T> pred, curr = find(head, item.key()); // locking

... // remove node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

37 / 76

Fine-locking set: method remove

head a b

µ

f g tail

pred curr

public boolean remove(T item) {

try { // find with hand-over-hand locking

// the first position such that curr.key >= item.key

Node<T> pred, curr = find(head, item.key()); // locking

... // remove node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

37 / 76

Fine-locking set: method remove

head a b f g tail

pred curr

public boolean remove(T item) {

try { // find with hand-over-hand locking

// the first position such that curr.key >= item.key

Node<T> pred, curr = find(head, item.key()); // locking

... // remove node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

37 / 76

Fine-locking set: method has

head a b e f g tail

pred currpred curr

public boolean has(T item) {

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // check node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

38 / 76

Fine-locking set: method has

head a b

µ

e

µ

f g tail

pred curr

pred curr

public boolean has(T item) {

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // check node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

38 / 76

Fine-locking set: method has

head a b

µ

e

µ

f g tail

pred curr

pred curr

public boolean has(T item) {

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // check node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

38 / 76

Fine-locking set: method has

head a b e f g tail

pred curr

pred curr

public boolean has(T item) {

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // check node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

38 / 76

Fine-locking set: pros and cons

Pros:

• if locks are fair, so is access to the set, because threads proceed
along the list one after the other without changing order

• threads operating on disjoint portions of the list may be able to
operate in parallel

Cons:

• it is still possible that one thread prevents another thread from
operating in parallel on a disjoint portion of the list – for example,
if one thread wants to access the end of the list but another
thread blocks it while locking the beginning of the list

• the hand-over-hand locking protocol may be quite slow, as it
involves a significant number of lock operations

39 / 76

Parallel linked sets

Optimistic locking

40 / 76

Concurrent set with optimistic locking

Let us revisit the idea of performing find without locking. We have
seen that problems may occur if the list is modified between when a
threads finds a position and when it acquires locks on that position.
Thus, we validate a position after finding it and while the nodes are
locked, to verify that no interference took place.

public class OptimisticSet<T> extends SequentialSet<T>

{

public FineSet()

{ head = new ReadWriteNode<>(Integer.MIN_VALUE); // smallest key

tail = new ReadWriteNode<>(Integer.MAX_VALUE); // largest key

head.setNext(tail); }

// is (pred, curr) a valid position?

protected boolean valid(Node<T> pred, Node<T> curr) // ...

// overriding of find, add, remove, and has

41 / 76

Nodes in an optimistic-locking set

Since we need to be able to follow the chain of next references
without locking, attribute next must be declared volatile in Java – so
that modifications to it (which occur while the node is locked) are
propagated to all threads (even if they have not locked a node). Other
than for this detail, a ReadWriteNode is the same as a LockableNode.

With a little abuse of notation, we can pretend that ReadWriteNode
inherits from LockableNode and overrides its next attribute. Overriding
of attributes is however not possible in Java (shadowing takes place
instead); the actual implementation that we make available does not
reuse LockableNode’s code through inheritance.

class ReadWriteNode<T> extends LockableNode<T>

{

private volatile Node<T> next; // next node in chain

}

42 / 76

Delayed locking as optimistic locking

In OptimisticSet, operations work as follows:

1. find the item’s position inside the list without locking – as in
SequentialSet

2. lock the position’s nodes pred and curr

3. validate the position while the nodes are locked:
3.1 if the position is valid, perform the operation while the nodes are

locked, then release locks
3.2 if the position is invalid, release locks and repeat the operation from

scratch
This approach is optimistic because it works well when validation is
often successful (so we don’t have to repeat operations).

43 / 76

Delayed locking as optimistic locking

In OptimisticSet, operations work as follows:

1. find the item’s position inside the list without locking – as in
SequentialSet

2. lock the position’s nodes pred and curr

3. validate the position while the nodes are locked:
3.1 if the position is valid, perform the operation while the nodes are

locked, then release locks
3.2 if the position is invalid, release locks and repeat the operation from

scratch
This approach is optimistic because it works well when validation is
often successful (so we don’t have to repeat operations).

43 / 76

Optimistic set: method add

head a b e f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new ReadWriteNode<>(item); // new node

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically add node

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}
44 / 76

Optimistic set: method add

head a b e f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new ReadWriteNode<>(item); // new node

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically add node

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}
44 / 76

Optimistic set: method add

head a b

µ

e

µ

f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new ReadWriteNode<>(item); // new node

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically add node

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}
44 / 76

Optimistic set: method add

head a b

µ Ë

e

µ Ë

f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new ReadWriteNode<>(item); // new node

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically add node

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}
44 / 76

Optimistic set: method add

head a b

µ Ë

e

µ Ë

f g tail

pred curr

node: c

public boolean add(T item) {

Node<T> node = new ReadWriteNode<>(item); // new node

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically add node

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}
44 / 76

Optimistic set: method add

head a b e f g tail

pred curr

node: cc

public boolean add(T item) {

Node<T> node = new ReadWriteNode<>(item); // new node

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically add node

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}
44 / 76

Optimistic set: method remove

head a b e f g tail

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically remove node

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

45 / 76

Optimistic set: method remove

head a b e f g tail

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically remove node

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

45 / 76

Optimistic set: method remove

head a b

µ

e

µ

f g tail

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically remove node

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

45 / 76

Optimistic set: method remove

head a b

µ Ë

e

µ Ë

f g tail

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically remove node

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

45 / 76

Optimistic set: method remove

head a b

µ

e f g tail

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically remove node

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

45 / 76

Optimistic set: method remove

head a b f g tail

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically remove node

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

45 / 76

Optimistic set: method has

head a b e f g tail

pred currpred curr

public boolean has(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, check key while locked

if (valid(pred, curr)) return curr.key() == item.key();

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

46 / 76

Optimistic set: method has

head a b e f g tail

pred curr

pred curr

public boolean has(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, check key while locked

if (valid(pred, curr)) return curr.key() == item.key();

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

46 / 76

Optimistic set: method has

head a b

µ

e

µ

f g tail

pred curr

pred curr

public boolean has(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, check key while locked

if (valid(pred, curr)) return curr.key() == item.key();

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

46 / 76

Optimistic set: method has

pred curr

head a b

µ Ë

e

µ Ë

f g tail

pred curr

public boolean has(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, check key while locked

if (valid(pred, curr)) return curr.key() == item.key();

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

46 / 76

Optimistic set: method has

pred curr

head a b

µ Ë

e

µ Ë

f g tail

pred curr

public boolean has(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, check key while locked

if (valid(pred, curr)) return curr.key() == item.key();

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

46 / 76

Optimistic set: method has

head a b e f g tail

pred curr

pred curr

public boolean has(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, check key while locked

if (valid(pred, curr)) return curr.key() == item.key();

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

46 / 76

Optimistic set: validating a position

Validation goes through the nodes until it reaches the given position.

head a b

µ

e

µ

f g tail

pred curr

node

node node

// is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

Node<T> node = head; // start from head

while (node.key() <= pred.key()) { // does pred point to curr?

if (node == pred) return pred.next() == curr;

node = node.next(); // continue to the next node

} // until node.pred > pred.key

return false; // pred could not be reached

} // or does not point to curr
47 / 76

Optimistic set: validating a position

Validation goes through the nodes until it reaches the given position.

head a b

µ

e

µ

f g tail

pred curr

node

node

node

// is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

Node<T> node = head; // start from head

while (node.key() <= pred.key()) { // does pred point to curr?

if (node == pred) return pred.next() == curr;

node = node.next(); // continue to the next node

} // until node.pred > pred.key

return false; // pred could not be reached

} // or does not point to curr
47 / 76

Optimistic set: validating a position

Validation goes through the nodes until it reaches the given position.

head a b

µ

e

µ

f g tail

pred curr

node node

node

// is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

Node<T> node = head; // start from head

while (node.key() <= pred.key()) { // does pred point to curr?

if (node == pred) return pred.next() == curr;

node = node.next(); // continue to the next node

} // until node.pred > pred.key

return false; // pred could not be reached

} // or does not point to curr
47 / 76

Optimistic set: validating a position

Validation goes through the nodes until it reaches the given position.

head a b

µ

e

µ

f g tail

pred curr

node node

node

// is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

Node<T> node = head; // start from head

while (node.key() <= pred.key()) { // does pred point to curr?

if (node == pred) return pred.next() == curr;

node = node.next(); // continue to the next node

} // until node.pred > pred.key

return false; // pred could not be reached

} // or does not point to curr
47 / 76

How validation works

What can happen between the time when a thread finds a position
(pred, curr) and when it locks nodes pred and curr?

• Node pred is removed: validation fails because pred is not
reachable

• Node curr is removed: validation fails because pred does not
point to curr

• A node is added between pred and curr: validation fails because
pred does not point to curr

• Any other modification of the set: validation succeeds because
operations leave the set in a consistent state

48 / 76

Is validation safe?

What happens if the set is being modified while a thread is validating
a locked position (pred, curr)?

• If a node following curr is modified: validation is not affected
because it only goes up until curr

• If a node n before pred is removed: validation succeeds even if it
goes through n, since n still leads back to pred

• If a node n is added before pred: validation succeeds even if it
skips over n

49 / 76

Optimistic-locking set: pros and cons

Pros:

• threads operating on disjoint portions of the list can operate in
parallel

• when validation often succeeds, there is much less locking
involved than in FineSet

Cons:

• OptimisticSet is not starvation free: a thread t may fail validation
forever if other threads keep removing and adding pred/curr
between when t performs find and when it locks pred and curr

• if traversing the list twice without locking is not significantly faster
than traversing it once with locking, OptimisticSet does not have
a clear advantage over FineSet

50 / 76

Parallel linked sets

Lazy node removal

51 / 76

Testing membership without locking

In many applications, the operation has is executed many more times
than add and remove. Can has work correctly without locking?

Problems may occur if another thread removes curr between find

and has’s check: since remove is not atomic without locking, if has
does not acquire locks it may not notice that curr is being removed.

For example, if thread t runs remove(e) while thread u runs has(e)

without locking, u may incorrectly think that e is in the list even if t is
about to remove it – that is thread t is in its critical section:

head a b

µ

e

µ

f g tail

pred curr

pred curr

pred curr

52 / 76

Testing membership without locking

In many applications, the operation has is executed many more times
than add and remove. Can has work correctly without locking?

Problems may occur if another thread removes curr between find

and has’s check: since remove is not atomic without locking, if has
does not acquire locks it may not notice that curr is being removed.

For example, if thread t runs remove(e) while thread u runs has(e)

without locking, u may incorrectly think that e is in the list even if t is
about to remove it – that is thread t is in its critical section:

head a b

µ

e

µ

f g tail

pred curr

pred curr

pred curr

52 / 76

Nodes in a lazy-removal set

We need a way to atomically share the information that a node is
being removed, but without locking.

To this end, each node includes a flag valid with setters and getters:

• valid() == true: the node is part of the set
• valid() == false: the node is being (or has been) removed

class ValidatedNode<T> extends ReadWriteNode<T>

{

private volatile boolean valid;

boolean valid() { return valid; } // is node valid?

void setValid() { valid = true; } // mark valid

void setInvalid() { valid = false; } // mark invalid

}

Nodes of type ValidatedNode can also be locked, since ValidatedNode

inherits from ReadWriteNode.
53 / 76

Concurrent set with lazy node removal

In a lazy set:

• Validation only needs to check the mark valid

• Operation remove marks a node invalid before removing it

• Operation has is lock free

• Operation add works as in OptimisticSet

public class LazySet<T> extends OptimisticSet<T>

{

public LazySet() {

head = new ValidatedNode<>(Integer.MIN_VALUE); // smallest key

tail = new ValidatedNode<>(Integer.MAX_VALUE); // largest key

head.setNext(tail);

}

// overriding of valid, remove, and has

54 / 76

Lazy set: validating a position

Validation becomes a constant-time operation:

• Node pred is reachable from the head iff it has not been removed
iff it is marked valid

• Node curr follows pred in the list iff pred.next() == curr and
curr is marked valid

Scenario: t ’s validation of curr succeeds:

head a b

µ

e

µ

f g tail

pred curr

pred curr

// is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

return pred.valid() && curr.valid() && pred.next() == curr;

}
55 / 76

Lazy set: validating a position

Validation becomes a constant-time operation:

• Node pred is reachable from the head iff it has not been removed
iff it is marked valid

• Node curr follows pred in the list iff pred.next() == curr and
curr is marked valid

Scenario: t ’s validation of curr succeeds:

head a b

µ Ë

e

µ Ë

f g tail

pred curr

pred curr

// is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

return pred.valid() && curr.valid() && pred.next() == curr;

}
55 / 76

Lazy set: validating a position

Validation becomes a constant-time operation:

• Node pred is reachable from the head iff it has not been removed
iff it is marked valid

• Node curr follows pred in the list iff pred.next() == curr and
curr is marked valid

Scenario: t ’s validation of curr fails:

head a b

µ

e

µ

f g tail

pred curr

pred curr

// is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

return pred.valid() && curr.valid() && pred.next() == curr;

}
55 / 76

Lazy set: validating a position

Validation becomes a constant-time operation:

• Node pred is reachable from the head iff it has not been removed
iff it is marked valid

• Node curr follows pred in the list iff pred.next() == curr and
curr is marked valid

Scenario: t ’s validation of curr fails:
pred curr

pred curr

head a b

µ

e

µ

f g tail

// is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

return pred.valid() && curr.valid() && pred.next() == curr;

}
55 / 76

Lazy set: validating a position

Validation becomes a constant-time operation:

• Node pred is reachable from the head iff it has not been removed
iff it is marked valid

• Node curr follows pred in the list iff pred.next() == curr and
curr is marked valid

Scenario: t ’s validation of curr fails:
pred curr

pred curr

head a b

µ Ë

e

µ é

f g tail

// is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

return pred.valid() && curr.valid() && pred.next() == curr;

}
55 / 76

Lazy set: method has

Method has runs without locking: it finds the position (pred, curr),
validates curr, and checks whether curr’s key is equal to item’s.

head a b e f g tail

pred curr

public boolean has(T item) {

// find position without locking

Node<T> pred, curr = find(head, item.key());

// check validity and item without locking

return curr.valid() && curr.key() == item.key();

}

Method find may traverse invalid nodes; this does not prevent it from
eventually reaching all valid nodes in the list.

56 / 76

Lazy set: method has

Method has runs without locking: it finds the position (pred, curr),
validates curr, and checks whether curr’s key is equal to item’s.

head a b e f g tail

pred curr

public boolean has(T item) {

// find position without locking

Node<T> pred, curr = find(head, item.key());

// check validity and item without locking

return curr.valid() && curr.key() == item.key();

}

Method find may traverse invalid nodes; this does not prevent it from
eventually reaching all valid nodes in the list.

56 / 76

Lazy set: method has

Method has runs without locking: it finds the position (pred, curr),
validates curr, and checks whether curr’s key is equal to item’s.

pred curr

head a b e

Ë

f g tail

public boolean has(T item) {

// find position without locking

Node<T> pred, curr = find(head, item.key());

// check validity and item without locking

return curr.valid() && curr.key() == item.key();

}

Method find may traverse invalid nodes; this does not prevent it from
eventually reaching all valid nodes in the list.

56 / 76

Lazy set: method has

Method has runs without locking: it finds the position (pred, curr),
validates curr, and checks whether curr’s key is equal to item’s.

pred curr

head a b e

Ë

f g tail

public boolean has(T item) {

// find position without locking

Node<T> pred, curr = find(head, item.key());

// check validity and item without locking

return curr.valid() && curr.key() == item.key();

}

Method find may traverse invalid nodes; this does not prevent it from
eventually reaching all valid nodes in the list.

56 / 76

Lazy set: method add

Method add works as in OptimisticSet, but using the overridden
version of valid – which works in constant time.

head a b e f g tail

pred curr

node: c

57 / 76

Lazy set: method add

Method add works as in OptimisticSet, but using the overridden
version of valid – which works in constant time.

head a b e f g tail

pred curr

node: c

57 / 76

Lazy set: method add

Method add works as in OptimisticSet, but using the overridden
version of valid – which works in constant time.

head a b

µ

e

µ

f g tail

pred curr

node: c

57 / 76

Lazy set: method add

Method add works as in OptimisticSet, but using the overridden
version of valid – which works in constant time.

head a b

µ Ë

e

µ Ë

f g tail

pred curr

node: c

57 / 76

Lazy set: method add

Method add works as in OptimisticSet, but using the overridden
version of valid – which works in constant time.

head a b

µ Ë

e

µ Ë

f g tail

pred curr

node: c

57 / 76

Lazy set: method add

Method add works as in OptimisticSet, but using the overridden
version of valid – which works in constant time.

head a b e f g tail

pred curr

node: cc

57 / 76

Lazy set: method remove

After finding the position of a node to be removed, the actual removal
consists of two steps:

1. logical removal: mark the node to be removed as invalid

2. physical removal: skip over the node by redirecting its
predecessor’s next

head a b e f g tail

pred curr

This removal is lazy because logical and physical removal may be
done at different times: after a node has been logically removed,
every thread is aware that it should not be considered part of the list.

58 / 76

Lazy set: method remove

After finding the position of a node to be removed, the actual removal
consists of two steps:

1. logical removal: mark the node to be removed as invalid

2. physical removal: skip over the node by redirecting its
predecessor’s next

head a b e f g tail

pred curr

This removal is lazy because logical and physical removal may be
done at different times: after a node has been logically removed,
every thread is aware that it should not be considered part of the list.

58 / 76

Lazy set: method remove

After finding the position of a node to be removed, the actual removal
consists of two steps:

1. logical removal: mark the node to be removed as invalid

2. physical removal: skip over the node by redirecting its
predecessor’s next

head a b

µ

e

µ

f g tail

pred curr

This removal is lazy because logical and physical removal may be
done at different times: after a node has been logically removed,
every thread is aware that it should not be considered part of the list.

58 / 76

Lazy set: method remove

After finding the position of a node to be removed, the actual removal
consists of two steps:

1. logical removal: mark the node to be removed as invalid

2. physical removal: skip over the node by redirecting its
predecessor’s next

head a b

µ Ë

e

µ Ë

f g tail

pred curr

This removal is lazy because logical and physical removal may be
done at different times: after a node has been logically removed,
every thread is aware that it should not be considered part of the list.

58 / 76

Lazy set: method remove

After finding the position of a node to be removed, the actual removal
consists of two steps:

1. logical removal: mark the node to be removed as invalid

2. physical removal: skip over the node by redirecting its
predecessor’s next

head a b

µ

e

µ

f g tail

pred curr

This removal is lazy because logical and physical removal may be
done at different times: after a node has been logically removed,
every thread is aware that it should not be considered part of the list.

58 / 76

Lazy set: method remove

After finding the position of a node to be removed, the actual removal
consists of two steps:

1. logical removal: mark the node to be removed as invalid

2. physical removal: skip over the node by redirecting its
predecessor’s next

head a b f g tail

pred curr

This removal is lazy because logical and physical removal may be
done at different times: after a node has been logically removed,
every thread is aware that it should not be considered part of the list.

58 / 76

Lazy set: method remove

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locking:

if (valid(pred, curr)) {

if (curr.key() != item.key())

return false; // item not in the set

else { // item in the set at curr: remove it

curr.setInvalid(); // logical removal

pred.setNext(curr.next()); // physical removal

return true;

}

}

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

59 / 76

Lazy-removal set: pros and cons

Pros:

• validation is constant time

• membership checking does not require any locking – it’s even
wait free (it traverses the list once without locking)

• physical removal of logically removed nodes could be batched
and performed when convenient – thus reducing the number of
times the physical chain of nodes is changed, in turn reducing
the expensive propagation of information between threads

Cons:

• operations add and remove still require locking (as in
OptimisticSet), which may reduce the amount of parallelism

60 / 76

Parallel linked sets

Lock-free access

61 / 76

Atomic references

To implement a set that is correct under concurrent access without
using any locks we need to rely on synchronization primitives more
powerful than just reading and writing shared variables.

We are going to use a variant of the compare-and-set operation.

class AtomicReference<V> {

V get(); // current reference

void set(V newRef); // set reference to newRef

// if reference == expectRef, set to newRef and return true

// otherwise, do not change reference and return false

boolean compareAndSet(V expectRef, V newRef);

}

62 / 76

Atomic lock-free access: first naive attempt

As a first attempt, we make attribute next of type
AtomicReference<Node<T>>, and use compareAndSet to update it: if one
thread changes next when another thread is also trying to change it,
we repeat the operation.

An implementation of remove() following this idea:

public boolean remove(T item) {

boolean done;

do {

Node<T> pred, curr = find(head, item.key());

if (curr.key() >= item.key()) return false; // item not in set

else

// try to remove curr by setting pred.next using compareAndSet

done = pred.next().compareAndSet(pred.next(), curr.next());

} while (!done); return true;

} pred.next may have changed
when compareAndSet() executes

63 / 76

Atomic lock-free access: first naive attempt

Unfortunately, the first attempt does not work: for example, if thread t
runs remove(e) while thread u runs remove(b), it may happen that
only b’s removal takes place.

head a b e f g tail

pred curr

pred curr

We have seen a similar problem before: modifications of the list need
to have control of both pred and curr – even if it is only the former
node that is actually modified.

64 / 76

Atomic lock-free access: first naive attempt

Unfortunately, the first attempt does not work: for example, if thread t
runs remove(e) while thread u runs remove(b), it may happen that
only b’s removal takes place.

head a b e f g tail

pred curr

pred curr

We have seen a similar problem before: modifications of the list need
to have control of both pred and curr – even if it is only the former
node that is actually modified.

64 / 76

Atomic lock-free access: first naive attempt

Unfortunately, the first attempt does not work: for example, if thread t
runs remove(e) while thread u runs remove(b), it may happen that
only b’s removal takes place.

head a b e f g tail

pred curr

pred curr

We have seen a similar problem before: modifications of the list need
to have control of both pred and curr – even if it is only the former
node that is actually modified.

64 / 76

Atomic lock-free access: first naive attempt

Unfortunately, the first attempt does not work: for example, if thread t
runs remove(e) while thread u runs remove(b), it may happen that
only b’s removal takes place.

head a b e f g tail

pred curr

pred curr

We have seen a similar problem before: modifications of the list need
to have control of both pred and curr – even if it is only the former
node that is actually modified.

64 / 76

Atomic markable references

As in LazySet, nodes can be marked valid or invalid; an invalid node is
logically removed. In addition, we need to access the information of
both attributes valid and next atomically; to this end, every node
includes an attribute nextValid of type
AtomicMarkableReference<Node<T>>, which provides methods to both
update a reference and a mark it, atomically.

class AtomicMarkableReference<V> {

V, boolean get(); // current reference and mark

// if reference == expectRef set mark to newMark and return true

// otherwise do not change anything and return false

boolean attemptMark(V expectRef, boolean newMark);

// if reference == expectRef and mark == expectMark,

// set reference to newRef, mark to newMark and return true;

// otherwise, do not change anything and return false

boolean compareAndSet(V expectRef, V newRef,

boolean expectMark, boolean newMark);

}
65 / 76

Nodes in a lock-free set

Every node includes an attribute nextValid of type
AtomicMarkableReference<Node<T>>. The node interface provides
methods to retrieve and conditionally update the current value of
nextValid, which includes a reference (corresponding to next) and a
mark (corresponding to valid).

class LockFreeNode<T> extends SequentialNode<T> {

// reference to next node and validity mark of current node

private AtomicMarkableReference<Node<T>> nextValid;

// return next and valid as a pair

Node<T>, boolean nextValid() { return nextValid.get(); }

Node<T> next()

{ Node<T> next, boolean valid = nextValid(); return next; }

boolean valid()

{ Node<T> next, boolean valid = nextValid(); return valid; }

pseudo-code for a Node<T> where only next and valid are set

66 / 76

Nodes in a lock-free set

Every node includes an attribute nextValid of type
AtomicMarkableReference<Node<T>>. The node interface provides
methods to retrieve and conditionally update the current value of
nextValid, which includes a reference (corresponding to next) and a
mark (corresponding to valid).

class LockFreeNode<T> extends SequentialNode<T> {

66 / 76

Nodes in a lock-free set

Every node includes an attribute nextValid of type
AtomicMarkableReference<Node<T>>. The node interface provides
methods to retrieve and conditionally update the current value of
nextValid, which includes a reference (corresponding to next) and a
mark (corresponding to valid).

class LockFreeNode<T> extends SequentialNode<T> {

// try to set invalid; return true if successful

boolean setInvalid()

{ Node<T> next = next();

return nextValid.compareAndSet(next, next, true, false); }

// try to update to newNext if valid; return true if successful

boolean setNextIfValid(Node<T> expectNext, Node<T> newNext)

{ return nextValid.compareAndSet(expectNext, newNext, true, true); }

update next only if the node is valid
66 / 76

Concurrent set with lock-free access

In a lock-free set:

• Operation remove marks a node invalid before removing it

• Operations that modify nodes complete successfully only if the
nodes are valid and not concurrently modified by another thread

• Failed operations are repeated until success (no interference)

public class LockFreeSet<T> extends SequentialSet<T>

{

public LockFreeSet() {

head = new LockFreeNode<>(Integer.MIN_VALUE); // smallest key

tail = new LockFreeNode<>(Integer.MAX_VALUE); // largest key

head.setNext(tail); // unconditionally set next

// only in new nodes

}

// overriding of all methods

67 / 76

Lock-free set: method remove

head a b e f g tail

pred curr

pred curr

pred curr

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;

// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}
68 / 76

Lock-free set: method remove

head a b e f g tail

pred curr

pred curr

pred curr

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;

// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}
68 / 76

Lock-free set: method remove

head a b e f g tail

pred curr

pred curr

pred curr

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;

// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}
68 / 76

Lock-free set: method remove

head a b e f g tail

pred curr

pred curr

pred curr

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;

// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}
68 / 76

Lock-free set: method remove

head a b e f g tail

pred curr

pred curr

pred curr

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;

// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}
68 / 76

Lock-free set: method remove

head a b e f g tail

é

pred curr

pred curr

physical removal of e fails

pred curr

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;

// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}

physical removal
of e fails: never mind!

68 / 76

Lock-free set: method remove

pred curr

pred curr

head a b e f g tail

pred curr

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;

// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}
68 / 76

Lock-free set: method remove

pred curr

pred curr

head a b e f g tail

pred curr

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;

// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}
68 / 76

Lock-free set: method remove

pred curr

pred curr

head a b e f g tail

pred curr

pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;

// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}
68 / 76

Lock-free set: method remove

pred curr

pred curr

head a b e

é

f g tail

pred curr

pred curr

logical removal of e fails

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;

// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}

logical removal
of e fails: retry!

68 / 76

Lock-free set: method remove

pred curr

pred curr

pred curr

pred curr

head a b e f g tail

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;

// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}
68 / 76

Lock-free set: method remove

pred curr

pred curr

pred curr

pred curr

head a b e f g tail

now remove(e) returns false
pred curr

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;

// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}
68 / 76

Logical removal: only one thread succeeds

If two threads both try to mark a node invalid, only one can succeed –
so it is guaranteed that no other thread is touching the node.

If this property was not enforced:

• The same element may be removed twice

head a b e f g tail

pred curr

pred curr

t ’s remove(e) returns true

u’s remove(e) returns true

but e has already been removed!

69 / 76

Logical removal: only one thread succeeds

If two threads both try to mark a node invalid, only one can succeed –
so it is guaranteed that no other thread is touching the node.

If this property was not enforced:

• The same element may be removed twice

head a b e f g tail

pred curr

pred curr

t ’s remove(e) returns true

u’s remove(e) returns true

but e has already been removed!

69 / 76

Logical removal: only one thread succeeds

If two threads both try to mark a node invalid, only one can succeed –
so it is guaranteed that no other thread is touching the node.

If this property was not enforced:

• The same element may be removed twice

head a b e f g tail

pred curr

pred curr

t ’s remove(e) returns true

u’s remove(e) returns true

but e has already been removed!

69 / 76

Logical removal: only one thread succeeds

If two threads both try to mark a node invalid, only one can succeed –
so it is guaranteed that no other thread is touching the node.

If this property was not enforced:

• The same element may be removed twice

head a b e

Ë

f g tail

pred curr

pred curr

t ’s remove(e) returns true

u’s remove(e) returns true

but e has already been removed!

69 / 76

Logical removal: only one thread succeeds

If two threads both try to mark a node invalid, only one can succeed –
so it is guaranteed that no other thread is touching the node.

If this property was not enforced:

• The same element may be removed twice

head a b e f g tail

pred curr

pred curr

t ’s remove(e) returns true

u’s remove(e) returns true

but e has already been removed!

69 / 76

Logical removal: only one thread succeeds

If two threads both try to mark a node invalid, only one can succeed –
so it is guaranteed that no other thread is touching the node.

If this property was not enforced:

• The same element may be removed twice

head a b e f g tail

pred curr

pred curr

t ’s remove(e) returns true

u’s remove(e) returns true

but e has already been removed!

69 / 76

Lock-free set: method add

head a b e f g tail

pred curr

pred curr

node: c

pred curr

public boolean add(T item) {

do { Node<T> pred, curr = find(head, item.key()); // already in set

if (curr.key() == item.key() && curr.valid()) return false;

// new node, pointing to curr

Node<T> node = new LockFreeNode<>(item).setNext(curr);

// if pred valid and points to curr, make it point to node

if (pred.setNextIfValid(curr, node)) return true;

} while (true); // pred changed during add: try again!

}
70 / 76

Lock-free set: method add

head a b e f g tail

pred curr

pred curr

node: c

pred curr

public boolean add(T item) {

do { Node<T> pred, curr = find(head, item.key()); // already in set

if (curr.key() == item.key() && curr.valid()) return false;

// new node, pointing to curr

Node<T> node = new LockFreeNode<>(item).setNext(curr);

// if pred valid and points to curr, make it point to node

if (pred.setNextIfValid(curr, node)) return true;

} while (true); // pred changed during add: try again!

}
70 / 76

Lock-free set: method add

head a b e f g tail

pred curr

pred curr

node: c

pred curr

public boolean add(T item) {

do { Node<T> pred, curr = find(head, item.key()); // already in set

if (curr.key() == item.key() && curr.valid()) return false;

// new node, pointing to curr

Node<T> node = new LockFreeNode<>(item).setNext(curr);

// if pred valid and points to curr, make it point to node

if (pred.setNextIfValid(curr, node)) return true;

} while (true); // pred changed during add: try again!

}
70 / 76

Lock-free set: method add

head a b

é

e f g tail

pred curr

pred curr

node: c

pred curr

connecting c fails

public boolean add(T item) {

do { Node<T> pred, curr = find(head, item.key()); // already in set

if (curr.key() == item.key() && curr.valid()) return false;

// new node, pointing to curr

Node<T> node = new LockFreeNode<>(item).setNext(curr);

// if pred valid and points to curr, make it point to node

if (pred.setNextIfValid(curr, node)) return true;

} while (true); // pred changed during add: try again!

}

connecting
c fails: retry!

70 / 76

Lock-free set: method add

head a e f g tail

pred curr

pred curr

node: c

pred curr

public boolean add(T item) {

do { Node<T> pred, curr = find(head, item.key()); // already in set

if (curr.key() == item.key() && curr.valid()) return false;

// new node, pointing to curr

Node<T> node = new LockFreeNode<>(item).setNext(curr);

// if pred valid and points to curr, make it point to node

if (pred.setNextIfValid(curr, node)) return true;

} while (true); // pred changed during add: try again!

}
70 / 76

Lock-free set: method add

head a e f g tail

pred curr

pred curr

node: c

pred curr

public boolean add(T item) {

do { Node<T> pred, curr = find(head, item.key()); // already in set

if (curr.key() == item.key() && curr.valid()) return false;

// new node, pointing to curr

Node<T> node = new LockFreeNode<>(item).setNext(curr);

// if pred valid and points to curr, make it point to node

if (pred.setNextIfValid(curr, node)) return true;

} while (true); // pred changed during add: try again!

}
70 / 76

Lock-free set: method add

head a

Ë

e f g tail

pred curr

pred curr

node: c

pred curr

public boolean add(T item) {

do { Node<T> pred, curr = find(head, item.key()); // already in set

if (curr.key() == item.key() && curr.valid()) return false;

// new node, pointing to curr

Node<T> node = new LockFreeNode<>(item).setNext(curr);

// if pred valid and points to curr, make it point to node

if (pred.setNextIfValid(curr, node)) return true;

} while (true); // pred changed during add: try again!

}
70 / 76

Lock-free set: method add

head a e f g tail

pred curr

pred curr

node: c

pred curr

public boolean add(T item) {

do { Node<T> pred, curr = find(head, item.key()); // already in set

if (curr.key() == item.key() && curr.valid()) return false;

// new node, pointing to curr

Node<T> node = new LockFreeNode<>(item).setNext(curr);

// if pred valid and points to curr, make it point to node

if (pred.setNextIfValid(curr, node)) return true;

} while (true); // pred changed during add: try again!

}
70 / 76

Lock-free set: method has

Method has works as in LazySet: it finds the position (pred, curr),
validates curr, and checks whether curr’s key is equal to item’s.
Unlike add and remove (which use a new version of find), has
traverses both valid and invalid nodes, and makes no attempt at
removing the latter.

head a b e f g tail

pred curr

public boolean has(T item) {

// find position (use plain search in SequentialSet)

Node<T> pred, curr = super.find(head, item.key());

// check validity and item

return curr.valid() && curr.key() == item.key();

}
71 / 76

Lock-free set: method has

Method has works as in LazySet: it finds the position (pred, curr),
validates curr, and checks whether curr’s key is equal to item’s.
Unlike add and remove (which use a new version of find), has
traverses both valid and invalid nodes, and makes no attempt at
removing the latter.

head a b e f g tail

pred curr

public boolean has(T item) {

// find position (use plain search in SequentialSet)

Node<T> pred, curr = super.find(head, item.key());

// check validity and item

return curr.valid() && curr.key() == item.key();

}
71 / 76

Lock-free set: method has

Method has works as in LazySet: it finds the position (pred, curr),
validates curr, and checks whether curr’s key is equal to item’s.
Unlike add and remove (which use a new version of find), has
traverses both valid and invalid nodes, and makes no attempt at
removing the latter.

pred curr

head a b e

Ë

f g tail

public boolean has(T item) {

// find position (use plain search in SequentialSet)

Node<T> pred, curr = super.find(head, item.key());

// check validity and item

return curr.valid() && curr.key() == item.key();

}
71 / 76

Lock-free set: method has

Method has works as in LazySet: it finds the position (pred, curr),
validates curr, and checks whether curr’s key is equal to item’s.
Unlike add and remove (which use a new version of find), has
traverses both valid and invalid nodes, and makes no attempt at
removing the latter.

pred curr

head a b e

Ë

f g tail

public boolean has(T item) {

// find position (use plain search in SequentialSet)

Node<T> pred, curr = super.find(head, item.key());

// check validity and item

return curr.valid() && curr.key() == item.key();

}
71 / 76

When to physically remove nodes?

Method has does not modify the set, so it can safely traverse valid
and invalid nodes without changing the node structure.

In contrast, methods add and remove physically remove all logically
removed nodes encountered by find. This is a convenient time to
perform physical removal, because it avoids the buildup of long
chains of invalid nodes.

For example, the logical removal of nodes f and g requires thread t to
physically remove f before it can physically remove g:

head a b e f g tail

pred curr

pred curr

pred curr

t cannot redirect pred because invalid!

72 / 76

When to physically remove nodes?

Method has does not modify the set, so it can safely traverse valid
and invalid nodes without changing the node structure.

In contrast, methods add and remove physically remove all logically
removed nodes encountered by find. This is a convenient time to
perform physical removal, because it avoids the buildup of long
chains of invalid nodes.

For example, the logical removal of nodes f and g requires thread t to
physically remove f before it can physically remove g:

head a b e f g tail

pred curr

pred curr

pred curr

t cannot redirect pred because invalid!

72 / 76

When to physically remove nodes?

Method has does not modify the set, so it can safely traverse valid
and invalid nodes without changing the node structure.

In contrast, methods add and remove physically remove all logically
removed nodes encountered by find. This is a convenient time to
perform physical removal, because it avoids the buildup of long
chains of invalid nodes.

For example, the logical removal of nodes f and g requires thread t to
physically remove f before it can physically remove g:

head a b e f g tail

pred curr

pred curr

pred curr

t cannot redirect pred because invalid!

72 / 76

When to physically remove nodes?

Method has does not modify the set, so it can safely traverse valid
and invalid nodes without changing the node structure.

In contrast, methods add and remove physically remove all logically
removed nodes encountered by find. This is a convenient time to
perform physical removal, because it avoids the buildup of long
chains of invalid nodes.

For example, the logical removal of nodes f and g requires thread t to
physically remove f before it can physically remove g:

head a b e f g tail

pred curr

pred curr

pred curr

t cannot redirect pred because invalid!

72 / 76

When to physically remove nodes?

Method has does not modify the set, so it can safely traverse valid
and invalid nodes without changing the node structure.

In contrast, methods add and remove physically remove all logically
removed nodes encountered by find. This is a convenient time to
perform physical removal, because it avoids the buildup of long
chains of invalid nodes.

For example, the logical removal of nodes f and g requires thread t to
physically remove f before it can physically remove g:

head a b e f g tail

pred curr

pred curr

pred curr

t cannot redirect pred because invalid!

72 / 76

Lock-free set: how find works

A run of find(k) that also physically removes three invalid nodes.

head a b e f g tail

pred currpred curr succpred curr succpred curr succpred curr succpred curr succpred currpred curr

Threads may interfere with find, requiring to restart it; in the worst
case, starvation may occur with a thread continuously restarting find

while others make progress modifying the list.

73 / 76

Lock-free set: how find works

A run of find(k) that also physically removes three invalid nodes.

head a b e f g tail

pred curr

pred curr succpred curr succpred curr succpred curr succpred curr succpred currpred curr

Threads may interfere with find, requiring to restart it; in the worst
case, starvation may occur with a thread continuously restarting find

while others make progress modifying the list.

73 / 76

Lock-free set: how find works

A run of find(k) that also physically removes three invalid nodes.

head a b e f g tail

pred curr

pred curr succ

pred curr succpred curr succpred curr succpred curr succpred currpred curr

Threads may interfere with find, requiring to restart it; in the worst
case, starvation may occur with a thread continuously restarting find

while others make progress modifying the list.

73 / 76

Lock-free set: how find works

A run of find(k) that also physically removes three invalid nodes.

pred curr

pred curr succ

head b e f g tail

pred curr succpred curr succpred curr succpred curr succpred currpred curr

Threads may interfere with find, requiring to restart it; in the worst
case, starvation may occur with a thread continuously restarting find

while others make progress modifying the list.

73 / 76

Lock-free set: how find works

A run of find(k) that also physically removes three invalid nodes.

pred currpred curr succ

head b e f g tail

pred curr succ

pred curr succpred curr succpred curr succpred currpred curr

Threads may interfere with find, requiring to restart it; in the worst
case, starvation may occur with a thread continuously restarting find

while others make progress modifying the list.

73 / 76

Lock-free set: how find works

A run of find(k) that also physically removes three invalid nodes.

pred currpred curr succ

head b e f g tail

pred curr succ

pred curr succ

pred curr succpred curr succpred currpred curr

Threads may interfere with find, requiring to restart it; in the worst
case, starvation may occur with a thread continuously restarting find

while others make progress modifying the list.

73 / 76

Lock-free set: how find works

A run of find(k) that also physically removes three invalid nodes.

pred currpred curr succ

head b e f g tail

pred curr succpred curr succ

pred curr succ

pred curr succpred currpred curr

Threads may interfere with find, requiring to restart it; in the worst
case, starvation may occur with a thread continuously restarting find

while others make progress modifying the list.

73 / 76

Lock-free set: how find works

A run of find(k) that also physically removes three invalid nodes.

pred currpred curr succpred curr succpred curr succ

pred curr succ

head b e g tail

pred curr succpred currpred curr

Threads may interfere with find, requiring to restart it; in the worst
case, starvation may occur with a thread continuously restarting find

while others make progress modifying the list.

73 / 76

Lock-free set: how find works

A run of find(k) that also physically removes three invalid nodes.

pred currpred curr succpred curr succpred curr succpred curr succ

head b e g tail

pred curr succ

pred currpred curr

Threads may interfere with find, requiring to restart it; in the worst
case, starvation may occur with a thread continuously restarting find

while others make progress modifying the list.

73 / 76

Lock-free set: how find works

A run of find(k) that also physically removes three invalid nodes.

pred currpred curr succpred curr succpred curr succpred curr succ

pred curr succ

head b e tail

pred currpred curr

Threads may interfere with find, requiring to restart it; in the worst
case, starvation may occur with a thread continuously restarting find

while others make progress modifying the list.

73 / 76

Lock-free set: how find works

A run of find(k) that also physically removes three invalid nodes.

pred currpred curr succpred curr succpred curr succpred curr succpred curr succ

head b e tail

pred curr

pred curr

Threads may interfere with find, requiring to restart it; in the worst
case, starvation may occur with a thread continuously restarting find

while others make progress modifying the list.

73 / 76

Lock-free set: how find works

A run of find(k) that also physically removes three invalid nodes.

pred currpred curr succpred curr succpred curr succpred curr succpred curr succ

head b e tail

pred curr

pred curr

Threads may interfere with find, requiring to restart it; in the worst
case, starvation may occur with a thread continuously restarting find

while others make progress modifying the list.

73 / 76

Lock-free set: how find works

A run of find(k) that also physically removes three invalid nodes.

pred currpred curr succpred curr succpred curr succpred curr succpred curr succ

head b e tail

pred currpred curr

Threads may interfere with find, requiring to restart it; in the worst
case, starvation may occur with a thread continuously restarting find

while others make progress modifying the list.

73 / 76

Lock-free set: method find

protected Node<T>, Node<T> find(Node<T> start, int key) {

boolean valid; // is curr valid?

Node<T> pred, curr, succ; // consecutive nodes in iteration

retry: do {

pred = start; curr = start.next(); // from start node

do { // succ is curr’s successor; valid is curr’s validity

succ, valid = curr.nextValid();

while (!valid) { // while curr is not valid, try to remove it

// if pred is modified while trying to redirect it, retry

if (!pred.setNextIfValid(curr, succ)) continue retry;

// curr has been physically removed: move to next node

curr = succ; succ, valid = curr.nextValid();

} // now curr is valid (and so is pred)

if (curr.key() >= key) return (pred, curr);

pred = curr; curr = succ; // continue search

} while (true);

} while (true);

}
74 / 76

Lock-free set: pros and cons

Pros:

• no operations require locking: maximum potential for parallelism

• membership checking does not require any locking – it’s even
wait free (it traverses the list once without locking)

Cons:

• the implementation needs test-and-set-like synchronization
primitives, which have to be supported and come with their own
performance costs

• operations add and remove are lock free but not wait free: they
may have to repeat operations, and they may be delayed while
they physically remove invalid nodes, with the risk of introducing
contention on nodes that have been already previously logically
deleted

75 / 76

To lock or not to lock?

Each of the different implementations of concurrent set is the best
choice for certain applications and not for others:

• CoarseSet works well with low contention

• FineSet works well when threads tend to access the list orderly

• OptimisticSet works well to let threads operate on disjoint
portions of the list

• LazySet works well when batching invalid node removal is
convenient

• LockFreeSet works well when locking is quite expensive

76 / 76

These slides’ license

© 2016–2019 Carlo A. Furia, Sandro Stucki

Except where otherwise noted, this work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

	The burden of locking
	Linked set implementations
	Nodes, lists, and sets
	Sequential access

	Parallel linked sets
	Coarse-grained locking
	Fine-grained locking
	Optimistic locking
	Lazy node removal
	Lock-free access

